Read this document carefully before using this device. The guarantee will be expired by device damages if you don't attend to the directions in the user manual. Also we don't accept any compensations for personal injury, material damage or capital disadvantages.

ENDA ECH SERIES UP/DOWN COUNTER \& RPM/TACHOMETER

Thank you for choosing ENDA ECH series devices.

$48 \times 48 \mathrm{~mm}$ and $72 \times 72 \mathrm{~mm}$ sizes.
2x6 digits indicator.
Programmable as Counter and RPM/Tachometer.
6 Digits Batch Counter.
9 Digits Total Counter.
Period time differences, pulse time, turnover and speed measurement.
Easy to use front panel keypad.
Counts Up or Down acording to input phase difference.
Input frequency can be selected.
Input signal can be calibrated to the desired value by multiplying between 0.000001 and 99.9999 .
Decimal point can be set between 1 and 5 .
Sensor input type can be selected by using keyped (PNP, NPN).
Dual setpoint and dual contact relay.
SET1 can be selected to dependent on SET2.
Output contact relay can be adjusted to continuous output or between
0.01 and 999.9-second intervals.

Output delay time can be adjusted in Tachometer Mode
Functional reset selection.
0-500000 Offset selection.
Parameter access protection.
Easy installation.
RS485 Modbus communication interface (Specify at order).
CE marked according to European Norms.

TECHNICAL SPECIFICATIONS

ENVIRONMENTAL CONDITIONS

Ambient / Storage Temperature
Max. relative humidity
Rated pollution degree
Height
$0 \ldots+50^{\circ} \mathrm{C} /-25 \ldots+70^{\circ} \mathrm{C}$ (with no icing)
80% Relative humidity for temperatures up to $31^{\circ} \mathrm{C}$, decreasing linearly to 50% at $40^{\circ} \mathrm{C}$.
According to EN 60529 ; Front Panel : IP65, Rear Panel : IP20
Max. 2000m

KEEP AWAY device from exposed to corrosive, volatile and flammable gases
or liquids and DO NOT USE the device in similar hazardous locations.

ELECTRICAL CHARACTERISTICS

Supply

Power Consumption
Wiring
Data Protection
EMC
Safety Requirements

INPUTS

Count inputs CPA, CPB
Counting frequency (Hz)
Reset Input

OUTPUTS

Control Output (OUT1 and OUT2)
SSR1 and SSR2 Output
Sensor (Auxiliary) Supply Output
Life expectancy for relay

Accuracy
Noun "S.S.OUT" output

Housing Type	Suitable for flush-panel mounting according to DIN 43700.	
Dimensions	ECH4400: G48xY48xD87mm,	ECH7700: G72xY72xD97mm.
Weight	ECH4400: Approx. 230g (after packing)	ECH7700:Approx. 380g (after packing)
Enclosure Material Self extinguishing plastics		
Avoid any liquid contact when the device is switched on. DO NOT clean the device with solvent (thinner, gasoline, acid etc.) and / or abrasive cleaning agents.		

TERMS
(1) Counting direction
(4) Counter or Tachometer measurement value (Running Mode) Menu and Parameter name (Programming Mode)
(5) Setpoint value (Running Mode) Parameter value (Programming Mode)
(6) Device status indicators.
(7) Keypad

In counter mode, if the Total Counter is active and this key is pressed during "Running Mode", Total Counter value can be displayed.
(1) Counting Direction
(2) Output status indicators
(3) Signal inputs indicators
(4) PV Indicators
(5) PV Indicators
(6) Device status indicators
(7) Keypad

Up / Down arrows (same as PV indicator color)
Two pieces (same as SV indicator color)
Two pieces (same as SV indicator color)
7 segment, 6 digits. LCD indicator colors can be selected as red, green and orange. (Character height 10 mm).
7 segment, 6 digits. LCD indicator colors can be selected as red, green and orange. (Character height 7 mm).
Six pieces (same as SV indicator color)
Micro switch

SETTING UP PRESET VALUES
 "Programming Mode" is entered.

Accessing to "Running Mode" from "Programming Mode"
if no key is pressed within 20 seconds, during "Programming Mode", data is stored automatically and "Running Mode" is entered. Alternatively the same function occurs first pressing \square key and "Programming Mode" is entered. Then \square keys are pressing together, data is recorded and "Running Mode" is entered.

Input Cofiguration Menu	Output Cofiguration Menu	Indicator Cofiguration Menu	Device Cofiguration Menu
inp.CnF	out.CnF	dsp.CnF	d.ConFg

np.typ	$\left.\begin{array}{l}\text { Input Type Selection } \\ 7 \text { different counting types can } \\ \text { be selected for } C p A\end{array}\right)$
AuP. CpB	

AuP.buP $\begin{aligned} & \text { be selected for } \mathrm{CpA} \text { and } \mathrm{CPB} \\ & \text { inputs. } \\ & \text { (Se }\end{aligned}$
\triangle Vin
Cnt.di $\underset{\text { up- Cnt }}{\text { r }}$
up- Cnt
\triangle V/in
i nP.CAI Calibration Multiplier
Can beadjusted between
.000001 and 99.9999 Counter
value multiplied by the value multiplied by th
calibration value.
\triangle 7/in
i nP.Frq Maximum Frequency Selection
Allows Allows to set the maximum
count frequency can $\begin{aligned} & \text { ap applied } \\ & \text { to counter input. } 10 \text { different }\end{aligned}$ count frequency can be appl
to counter input. 10 different
slices frequencies can be \triangle 回
sEn.typ
Sensor Type Selection
Sensor Type Selection
Can be selected as NPN or Can be selected as NPN or
PNP.

PNP must be selected for Encoder. \triangle V/in rEs.PI S | Reset Input Puls Time |
| :--- |
| $\begin{array}{l}\text { Required minimum pulse } \\ \text { duration for reset input. }\end{array}$ | 100 ms duration for reset input.

Can be adjusted to 1,5,
10,20 and 50 msec .
Counting Direction
Counter Up / Down selection. selection. .
ou1.ti m Out1 Output Duration $\begin{aligned} & \text { Can be adjusted between } 0.0\end{aligned}$ W Can be adjusted between 0.0 and 999.9 seconds. If 0.0 is
selected, output is energized continuously when Preset1
value is reached. value is reached.

Ou2.ti $m \begin{aligned} & \text { Out2 Output Duration } \\ & \text { Can be adjusted between }\end{aligned}$ OU2.ti $\mathrm{m} \quad \begin{aligned} & \text { Can be adjusted between } 0.0 \\ & \text { and gog.9 seconds. If } 0.0 \text { is } \\ & \text { selected, output is energized } \\ & \text { continuously when Preset }\end{aligned}$ continuously whe
value is reached.
 tot.CnF $\begin{aligned} & \text { Total Counter Settings } \\ & \text { di sAbl } \\ & \begin{array}{l}\text { disAb } \\ \text { disabled. }\end{array} \\ & \text { II }\end{aligned}$ disabled.
If Countr Counter input is connected Tod to
out1 is selected, counted from Total C Counter.
If out2 is selected, out2 counted from Total Counter. Counter mode is selected and Δ key is pressed dur
Running Mode", Total counter value can be displayed. PrS.CnF $\begin{aligned} & \text { Out1 Setpoint Value Selection } \\ & \text { If PrsEt1 is selected, when }\end{aligned}$ prSEt 1 Presetl value, $\Delta / / i$
activated.
If P 2 -p1
is selected, Preset 2 counter value is subtracting by
Preset1 and Out1 output is Presetl and Out1 output is
activated during equal to the value.

PARAMETER SETTINGS

The selected parameter of the digit will flash when the \quad key is pressed. Value can be changed by using $\Delta / \mathrm{Z} / \mathrm{il}$ navigation keys. The next digit can be selected with the \triangleright key and the same method can be applied as the previous step. If the decimal point of the selected parameter can also be adjusted, the message -dP appears on the display during the digit selection. While this message is displayed, the decimal point is brought to the desired place with the Δ V/ir keys
If the Δ key (Up) is pressed continuously for 0.6 seconds, the value to be increasing rapidly. The same method applies to the decrement (Down) key.

NOTE: 1
$\begin{array}{ccr} & & \\ \text { Input Symbol } & \text { NPN input (Voltage input no) PNP input (Voltage input) } \\ \text { H } & \text { input short circuit } & 4,5 \mathrm{~V}-30 \mathrm{~V} \text { DC } \\ \text { L } & \text { input open circuited } & 0 \mathrm{~V}-2 \mathrm{~V} \text { DC }\end{array}$

[^0]If the $\Delta \quad$ key (Up) is pressed continuously for 0.6 seconds, the value to be increasing rapidly. The same method applies to the decrement (Down) key.

0 Pulse Measurement Method (rps: pulse/second, rpm: pulse/minute, rph : pulse/hour)
 Attention: Pulse and void times input signal appropriate must be selected.
(1) Phase Difference Input Pulse Measurement Method (rps: pulse/second, rpm: pulse/minute, rph : pulse/hour

2
CPA With CPB Inputs Puls Rate Finding Method
CPA input

Process value \square Previous value $\quad(1 / \mathrm{Ta}) /(1 / \mathrm{Tb})$
Speed Measurement Method ($\mathrm{m} / \mathrm{s}:$ meter / second, $\mathrm{m} / \mathrm{m}:$ meter / minute, $\mathrm{m} / \mathrm{h}:$ meter / hour) Can Be Selected CPA i

CPB input

 Attention: Pulse and void times input signal appropriate must be selected

0
Attention: Pulse and void times input signal appropriate must be selected.

7 Pulse Census Method

8 Pulse Census Method

0

If inp.tYP . = tAc.dir . is selected, following output types will be activated.

If ou1.t $\mathbf{i} \mathbf{~ m}$ and ou2.t $\mathbf{i} \mathbf{~ m}$ is adjusted between 0.01 and 999.9 sec . pulse output is obtained.
\square If ou1.t i m and ou2.t i mis adjusted between 0.0 sec . (Hold) continuous output is obtained
ou1.dt \mathbf{i} and ou2.dt $\mathbf{i} \quad$ is adjusted between 0.0 and 999.9 sec
Output delayed of until adjusted time. When set 0 output is instantly taken

CONNECTION DIAGRAM

ENDA	ECH4400-230VAC-RS
INDUSTRIAL	
ELECTRONICS	ROHS
1+A	\square
2- $\mathbf{B}^{\text {RS- }} 88$	$90-250 \mathrm{VAC} 11$
3-RS-485 Сом.	60 Hz 5VA 12
4 SSR2 OUT	AC $250 \mathrm{~V} 10 \mathrm{~A} \quad 13$
5 SSR1 OUT	RESISTIVE OUT1 1 - 14
6 RESET IN	15
7 CPB IN	AC 250V 5A RESISTIVE OUT2
8 CPA	LOAD
	SN: XXXXXXXXX
10 +12V 50 mA	

ENDA ECH4400-24VAC-RS COUNTERTACHOMETER	
ELECTRONICS	RoHS
1+ ${ }^{\text {A }}$	\square
2- $\boldsymbol{B}^{\text {RS }}$	8-24V
3-RS-485 Сом.	$50 / 60 \mathrm{~Hz} 5 \mathrm{VA}$
4 SSR2 OUT	AC 250 V 10
5 SSR1 OUT	RESISTIVE OUT1 -14
6 RESET IN	
AC AC 250V 5A -16	
8 CPA IN	
	made in turkive

SENSOR CONNECTION SAMPLES

Connection samples for PNP sensor type

Connection samples for NPN sensor type

Logic output of the device is not electrically isolated.

Note: 1) Mains supply cords shall meet the requirements of IEC60227 or IEC60245
2) In accordance with the safety regulations, the power supply switch shall bring the identification of the relevant instrument and it should be easily accessible by the operator.
$\bigodot) \substack{\text { Holding screw } \\ 0.4-0.5 \mathrm{Nm}}$

Equipment is protected throughout by DOUBLE INSULATION.

ENDA ECHxx00 COUNTER/TACHOMETER MODBUS ADDRESS MAP
1.1 Counter/Tachometer Memory Map for Timer Holding Registers

ENDA ECHxx00 COUNTER/TACHOMETER MODBUS ADDRESS MAP

1.2 Memory Map For Input Registers

Parameter Number	Input Register address Decimal (Hex)	Data Type	Data Content	Read / Write Permission
10	0000d (0000h)	Dword	Counter counting values (Format :32 Bit Hex = Adjustable between -999999 and 999999d) First word LSW, second word MSW Sample: Reading value for 550000 d (86470h); LSW $=6470 \mathrm{~h}, \mathrm{MSW}=0008 \mathrm{~h}$.	R
12	0002d (0002h)	Dword	Batch counter counting value (Format :32 Bit Hex = Adjustable 0 and 999999d) First word LSW, second word MSW Sample: If reading value is 550000 d (86470 h) ; LSW $=6470 \mathrm{~h}, \mathrm{MSW}=0008 \mathrm{~h}$	R
14	0004d (0004h)	Dword	Total Counter counting value (Format :32 Bit Hex = Adjustable between -999,999,999 and 999,999,999d) First word LSW, second word MSW	R
16	0006d (0006h)	Dword	Counter hold value (Format is as in the 10 input register)	R
18	0008d (0008h)	Dword	Active Preset1 value (Format is as in the $\mathbf{1 2}$ input register)	R
110	0010d (000Ah)	Dword	Tachometer measurement value (Format is as in the 12 input register)	R
112	0012d (000Ch)	Dword	CPA pulse value (Format is as in the 12 input register)	R
114	0014d (000Eh)	Dword	CPB pulse value (Format is as in the 12 input register)	R

1.3 Memory Map for Input Registerlers

Parameter Number	Holding Register addresses Decimal (Hex)	Data Type	Data C ontent	Read / Write Permission
$\mathbf{1 0}$	0000d (0000h)	Word	Timer1 time value (Must be read according to BCD format)	R
$\mathbf{I 1}$	$0001 \mathrm{~d}(0001 \mathrm{~h})$	Word	Timer2 time value (Format is as in the IO parameter)	R
$\mathbf{1 2}$	$0002 \mathrm{~d}(0002 \mathrm{~h})$	Word	Out1 pulse time value (Must be read according to BCD format. Sensitivity 0.00sn)	R
$\mathbf{1 3}$	0003d (0003h)	Word	Out2 pulse time value (Format is as in the I2 parameter)	R

1.4 Memory Map for Output Status Indicator Bits

Parameter Number	Discrete input addresses	Data Type	Data Content	Read / Write Permission
D0	(0000) h	Bit	OUT1 Output status ($0=$ OFF , $1=\mathrm{ON}$)	R
D1	(0001) h	Bit	OUT2 Output status ($0=$ OFF , $1=\mathrm{ON}$)	R
D2	(0002)h	Bit	Panel reset key status ($0=$ Reset key inactive, 1 = Reset key is active)	R
D3	(0003)h	Bit	Reserve	R
D4	(0004)h	Bit	Reset input status ($0=$ Reset input inactive, 1 = Reset input is active)	R
D5	(0005)h	Bit	Gate input status ($0=$ Gate input inactive, $1=$ Gate input is active)	R
D6	(0006)h	Bit	Start input status ($0=$ Start input inactive, $1=$ Start input is active)	R
D7-D15	$\begin{array}{\|c\|} \hline 0007 \mathrm{~d} \\ \hline 0007 \mathrm{c}) \\ 0015 \mathrm{~d} \\ \hline \end{array}(000 \mathrm{Fh}) .$	Bit	Reserve	R

1.5 Memory Map for Software Revision Input Registers

2. MODBUS ERROR MESSAGES

Modbus protocol has two types error, communication error and operating error. Reason of the communication error is data corruption in transmission. Parity and CRC control should be done to prevent communication error. Receiver side checks parity and CRC of the data. If they are wrong, the message will be ignored. If format of the data is true but function doesn't perform for any reason, operating error occurs. Slave realizes error and sends error message. Most significant bit of function is changed '1' to indicate error in error message by slave. Error code is sent in data section. Master realizes error type via this message.

ModBus Error Codes

Error Code	Name	Meaning
01	ILLEGAL FUNCTION	The function code received in the query is not an allowable action for the slave. If a Poll Program Complete command was issued, this code indicates that no program function preceded it.
02	ILLEGAL DATA ADDRESS	The data address received in the query is not an allowable address for the slave.
03	illegal data value	A value contained in the query data field is not an allowable value for the slave.

Message example;

Structure of command message (Byte Format)
Structure of response message (Byte Format)

Device Address		(0A)h
Function Code		$(01) \mathrm{h}$
Beginning address of coils.	MSB	$(04) \mathrm{h}$
	LSB	(A1)h
Number of coils (N)	MSB	$(00) \mathrm{h}$
	LSB	$(01) \mathrm{h}$
	LSB	(AC)h
	MSB	$(63) \mathrm{h}$

Device Address		(0A)h
Function Code		$(81) \mathrm{h}$
Error Code		$(02) \mathrm{h}$
CRC DATA	LSB	$(B 0) \mathrm{h}$
	MSB	$(53) \mathrm{h}$

As you see in command message, coil information of (4A1)h = 1185 is required but there isn't any coil with 1185 address. Therefore error code with number (02) (Illegal Data Address) sends.

[^0]: The selected parameter of the digit will flash when the key is pressed. Value can be changed by using $\Delta / / i \operatorname{lin}$ navigation keys. The next digit can be selected with the \triangleright key and the same method can be applied as the previous step. If the decimal point of the selected parameter can also be adjusted, the message -dP appears on the display during the digit selection. While this message is displayed, the decimal point is brought to the desired place with the $\Delta / / i{ }^{i l}$ keys.

